Derivations of universal exact complex absorption potentials by the generalized complex coordinate method
نویسندگان
چکیده
On the basis of the Moiseyev–Hirschfelder generalization of the complex coordinate method, a universal energy-independent complex absorbing potential (CAP), is derived. It is proven that the universal CAP consists of flux and diffusion-type operators. When a smooth exterior scaling is used, the CAP gets non-zero values in the region where the interaction potential vanishes. An illustrative numerical example is given where narrow and broad, isolated and overlapping resonances were all calculated with more than nine digits of accuracy.
منابع مشابه
POINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کاملOn the stability of generalized derivations on Banach algebras
We investigate the stability of generalizedderivations on Banach algebras with a bounded central approximateidentity. We show that every approximate generalized derivation inthe sense of Rassias, is an exact generalized derivation. Also thestability problem of generalized derivations on the faithful Banachalgebras is investigated.
متن کاملA new idea for exact solving of the complex interval linear systems
In this paper, the aim is to find a complex interval vector [Z] such that satisfies the complex interval linear system C[Z]=[W]. For this, we present a new method by restricting the general solution set via applying some parameters. The numerical examples are given to show ability and reliability of the proposed method.
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملApplication of the Kudryashov method and the functional variable method for the complex KdV equation
In this present work, the Kudryashov method and the functional variable method are used to construct exact solutions of the complex KdV equation. The Kudryashov method and the functional variable method are powerful methods for obtaining exact solutions of nonlinear evolution equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007